 Command
Site Info

WebTUI docs and showcase for the terminal-inspired CSS library.

Keybinds
⌃K Command palette
/ Search
? Show keybinds
Theme
Theme
 Search
about: 🪪 About landing: Landing ideas: 💡 Ideas more: ➕ More now: Now posts: 📬 Posts projects: 📚 Projects talks: 🎙️ Talks posts/2025: 📆 2025 posts/ai-for-physics: ⚛️ AI for Physics posts/auroragpt: 🤖 AuroraGPT posts/ezpz-at-alcf: 🍋 ezpz @ ALCF posts/dope-slides: 💅 How to Make Dope Slides posts/ezpz-v1: 📝 ezpz-v1 posts/jupyter: 📗 Jupyter posts/resume: 🧑🏻‍💻 Sam Foreman’s Résumé posts/svgbob: 🫥 svgbob posts/torchtune-aurora: 🪛 Torchtune on Aurora posts/torchtune-patch-aurora: 🚑 Torchtune Patch on Aurora talks/auroragpt-siam25: AuroraGPT talks/ai-for-science-2024: Parallel Training Methods talks/alcf-hpc-workshop-2024/alcf-hpc-workshop-2024: Deep Learning and Foundation Models at Scale talks/aurora-gpt-fm-for-electric-grid/auroragpt-fm-for-electric-grid: AuroraGPT: Foundation Models for Science talks/hpc-user-forum/auroragpt: AuroraGPT talks/incite-hackathon-2025: ALCF Incite Hackathon 2025 talks/llms-at-scale: Training LLMs at Scale talks/llms-on-polaris: Training LLMs on Polaris talks/openskai25: Open SkAI2025 webtui/components/accordion: Accordion webtui/components/badge: Badge webtui/components/button: Button webtui/components/checkbox: Checkbox webtui/components/dialog: Dialog webtui/components/input: Input webtui/components/pre: Pre webtui/components/popover: Popover webtui/components/progress: Progress webtui/components/radio: Radio webtui/components/range: Range webtui/components/spinner: Spinner webtui/components/separator: Separator webtui/components/switch: Switch webtui/components/table: Table webtui/components/textarea: Textarea webtui/components/tooltip: Popover webtui/components/typography: Typography webtui/components/view: View webtui/plugins/plugin-nf: Nerd Font Plugin webtui/plugins/theme-catppuccin: Catppuccin Theme webtui/plugins/theme-everforest: Everforest Theme webtui/plugins/theme-gruvbox: Gruvbox Theme webtui/plugins/theme-nord: Nord Theme webtui/contributing/contributing: Contributing webtui/contributing/contributing: ## Local Development webtui/contributing/contributing: ## Issues webtui/contributing/contributing: ## Pull Requests webtui/contributing/style-guide: Style Guide webtui/contributing/style-guide: ## CSS Units webtui/contributing/style-guide: ## Selectors webtui/contributing/style-guide: ## Documentation webtui/plugins/plugin-dev: Developing Plugins webtui/plugins/plugin-dev: ### Style Layers webtui/plugins/theme-vitesse: Vitesse Theme webtui/start/ascii-boxes: ASCII Boxes webtui/start/changelog: Changelog webtui/start/intro: Introduction webtui/start/intro: ## Features webtui/installation/nextjs: Next.js webtui/installation/vite: Vite webtui/start/plugins: Plugins webtui/start/plugins: ## Official Plugins webtui/start/plugins: ### Themes webtui/start/plugins: ## Community Plugins webtui/start/tuis-vs-guis: TUIs vs GUIs webtui/start/tuis-vs-guis: ## Monospace Fonts webtui/start/tuis-vs-guis: ## Character Cells posts/2025/06: 06 posts/ai-for-physics/diffusion: 🎲 MCMC + Diffusion Sampling posts/ai-for-physics/l2hmc-qcd: 🎢 L2HMC for LQCD webtui/start/theming: Theming webtui/start/theming: ## CSS Variables webtui/start/theming: ### Font Styles webtui/start/theming: ### Colors webtui/start/theming: ### Light & Dark webtui/start/theming: ## Theme Plugins webtui/start/theming: ### Using Multiple Theme Accents webtui/installation/astro: Astro webtui/installation/astro: ## Scoping webtui/installation/astro: ### Frontmatter Imports webtui/installation/astro: ### <style> tag webtui/installation/astro: ### Full Library Import webtui/start/installation: Installation webtui/start/installation: ## Installation webtui/start/installation: ## Using CSS webtui/start/installation: ## Using ESM webtui/start/installation: ## Using a CDN webtui/start/installation: ## Full Library Import webtui/start/installation: ### CSS webtui/start/installation: ### ESM webtui/start/installation: ### CDN posts/auroragpt/aurora-gpt: 🏎️ Megatron-DeepSpeed on Intel XPU posts/auroragpt/checkpoints: 💾 Converting Checkpoints posts/auroragpt/determinstic-flash-attn/deterministic-flash-attn: 🎰 Deterministic `flash-attn` posts/auroragpt/flash-attn-sunspot: 📸 `flash-attn` on Sunspot posts/auroragpt/mpi4py-reproducer: 🐛 `mpi4py` bug on Sunspot posts/auroragpt/long-sequences: 🚂 Loooooooong Sequence Lengths posts/auroragpt/spike-skipper: 🏔️ Spike Skipper posts/auroragpt/startup-times: 🐢 Starting Up Distributed Training on Aurora posts/jupyter/test: 🏁 `l2hmc` Example: 2D $U(1)$ posts/jupyter/l2hmc-4dsu3: 🔳 `l2hmc-qcd` Example: 4D SU(3) talks/auroragpt/alcf-hpc-workshop-2024/auroragpt-alcf-hands-on-hpc-workshop-2024: AuroraGPT: ANL's General Purpose Scientific LLM talks/incite-hackathon-2025/auroragpt: LLMs on Aurora: Overview talks/incite-hackathon-2025/ezpz: LLMs on Aurora: Hands-On talks/openskai25/ai4science: Scientific AI at Scale: AuroraGPT talks/openskai25/training: Scientific AI at Scale: Distributed Training posts/2025/05/03: 🚧 Frameworks Issue with numpy \> 2 posts/2025/04/28: 🔥 Building PyTorch 2.6 from Source on Aurora posts/2025/06/01: 📰 Nice Headings posts/2025/06/02: 🧜‍♀️ Mermaid posts/2025/06/14: 🏗️ Building PyTorch 2.8 from Source on Aurora posts/2025/09/17: 📊 `pbs-tui`: TUI for PBS Job Scheduler Monitoring posts/2025/09/12: 🍹 BlendCorpus + TorchTitan @ ALCF posts/2025/10/06: 🎨 Mixing Between Distributions While Training posts/2025/11/12: 🧊 Cooling Down Checkpoints: Best Practices for Model Evaluation posts/2026/01/07: 🎉 Happy New Year! posts/2026/01/10: 🍋 ezpz posts/ai-for-physics/l2hmc-qcd/2du1: 🎢 l2hmc-qcd Example: 2D U(1) posts/ai-for-physics/l2hmc-qcd/4dsu3nb/index-broken: 🕸️ l2hmc-qcd Example: 4D SU(3) posts/jupyter/l2hmc/4dsu3: 🔳 l2hmc-qcd Example: 4D SU(3) talks/2025/09/24: Training Foundation Models on Supercomputers talks/2025/10/08: AERIS: Argonne's Earth Systems Model talks/2025/10/15: Training Foundation Models on Supercomputers talks/2025/10/24: Training Foundation Models on Supercomputers talks/2025/12/16: AuroraGPT: Training Foundation Models on Supercomputers posts/drafts/2025/09/22: 📝 2025 Annual Report
 Theme

AERIS: Argonne's Earth Systems Model

Sam Foreman 2025-10-08

🌎 AERIS

Reverse Diffusion ProcessForward Diffusion Process (\pi\rightarrow \mathcal{N})

Sequence-Window-Pipeline Parallelism SWiPe

  • SWiPe is a novel parallelism strategy for Swin-based Transformers
  • Hybrid 3D Parallelism strategy, combining:
    • Sequence parallelism (SP)
    • Window parallelism (WP)
    • Pipeline parallelism (PP)

Figure 6

Figure 7: SWiPe Communication Patterns

Aurora

Table 3: Aurora1 Specs

PropertyValue
Racks166
Nodes10,624
XPUs2127,488
CPUs21,248
NICs84,992
HBM8 PB
DDR5c10 PB

Figure 8: Aurora: Fact Sheet.

AERIS: Scaling Results

Figure 9: AERIS: Scaling Results

  • 10 EFLOPs (sustained) @ 120,960 GPUs
  • See (Hatanpää et al. (2025)) for additional details
  • arXiv:2509.13523

Hurricane Laura

Figure 10: Hurricane Laura tracks (top) and intensity (bottom). Initialized 7(a), 5(b) and 3(c) days prior to 2020-08-28T00z.

S2S: Subsseasonal-to-Seasonal Forecasts

[!IMPORTANT]

🌡️ S2S Forecasts

We demonstrate for the first time, the ability of a generative, high resolution (native ERA5) diffusion model to produce skillful forecasts on the S2S timescales with realistic evolutions of the Earth system (atmosphere + ocean).

  • To assess trends that extend beyond that of our medium-range weather forecasts (beyond 14-days) and evaluate the stability of our model, we made 3,000 forecasts (60 initial conditions each with 50 ensembles) out to 90 days.
  • AERIS was found to be stable during these 90-day forecasts
    • Realistic atmospheric states
    • Correct power spectra even at the smallest scales

Seasonal Forecast Stability

Figure 11: S2S Stability: (a) Spring barrier El Niño with realistic ensemble spread in the ocean; (b) qualitatively sharp fields of SST and Q700 predicted 90 days in the future from the

closest ensemble member to the ERA5 in (a); and (c) stable Hovmöller diagrams of U850 anomalies (climatology removed; m/s), averaged between 10°S and 10°N, for a 90-day rollout.

Next Steps

  • Swift: Swift, a single-step consistency model that, for the first time, enables autoregressive finetuning of a probability flow model with a continuous ranked probability score (CRPS) objective

References

  1. What are Diffusion Models? | Lil’Log
  2. Step by Step visual introduction to Diffusion Models. - Blog by Kemal Erdem
  3. Understanding Diffusion Models: A Unified Perspective

Hatanpää, Väinö, Eugene Ku, Jason Stock, et al. 2025. AERIS: Argonne Earth Systems Model for Reliable and Skillful Predictions. https://arxiv.org/abs/2509.13523.

Price, Ilan, Alvaro Sanchez-Gonzalez, Ferran Alet, et al. 2024. GenCast: Diffusion-Based Ensemble Forecasting for Medium-Range Weather. https://arxiv.org/abs/2312.15796.

Extras

Overview of Diffusion Models

Goal: We would like to (efficiently) draw samples xix_{i} from a (potentially unknown) target distribution q()q(\cdot).

  • Given x0q(x)x_{0} \sim q(x), we can construct a forward diffusion process by gradually adding noise to x0x_{0} over TT steps: x0{x1,,xT}x_{0} \rightarrow \left\{x_{1}, \ldots, x_{T}\right\}.
    • Step sizes βt(0,1)\beta_{t} \in (0, 1) controlled by a variance schedule {β}t=1T\{\beta\}_{t=1}^{T}, with:

      q(xtxt1)=N(xt;1βtxt1,βtI)q(x1:Tx0)=t=1Tq(xtxt1)\begin{aligned} q(x_{t}|x_{t-1}) = \mathcal{N}(x_{t}; \sqrt{1-\beta_{t}} x_{t-1}, \beta_{t} I) \\ q(x_{1:T}|x_{0}) = \prod_{t=1}^{T} q(x_{t}|x_{t-1}) \end{aligned}

Diffusion Model: Forward Process

  • Introduce:

    • αt1βt\alpha_{t} \equiv 1 - \beta_{t}
    • αˉts=1Tαs\bar{\alpha}_{t} \equiv \prod_{s=1}^{T} \alpha_{s}

    We can write the forward process as:

    q(x1x0)=N(x1;αˉ1x0,(1αˉ1)I) q(x*{1}|x*{0}) = \mathcal{N}(x*{1}; \sqrt{\bar{\alpha}*{1}} x*{0}, (1-\bar{\alpha}*{1}) I)

  • We see that the mean μt=αtxt1=αˉtx0\mu_{t} = \sqrt{\alpha_{t}} x_{t-1} = \sqrt{\bar{\alpha}_{t}} x_{0}

Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

Footnotes

  1. 🏆 Aurora Supercomputer Ranks Fastest for AI

  2. Each node has 6 Intel Data Center GPU Max 1550 (code-named “Ponte Vecchio”) tiles, with 2 XPUs per tile.